Inhibition of 26S Protease Regulatory Subunit 7 (MSS1) Suppresses Neuroinflammation

نویسندگان

  • Wei Bi
  • Xiuna Jing
  • Lihong Zhu
  • Yanran Liang
  • Jun Liu
  • Lianhong Yang
  • Songhua Xiao
  • Anding Xu
  • Qiaoyun Shi
  • Enxiang Tao
چکیده

Recently, researchers have focused on immunosuppression induced by rifampicin. Our previous investigation found that rifampicin was neuroprotective by inhibiting the production of pro-inflammatory mediators, thereby suppressing microglial activation. In this study, using 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), we discovered that 26S protease regulatory subunit 7 (MSS1) was decreased in rifampicin-treated microglia. Western blot analysis verified the downregulation of MSS1 expression by rifampicin. As it is indicated that the modulation of the ubiquitin-26S proteasome system (UPS) with proteasome inhibitors is efficacious for the treatment of neuro-inflammatory disorders, we next hypothesized that silencing MSS1 gene expression might inhibit microglial inflammation. Using RNA interference (RNAi), we showed significant reduction of IkBα degradation and NF-kB activation. The production of lipopolysaccharides-induced pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), nitric oxide, cyclooxygenase-2, and prostaglandin E(2) were also reduced by MSS1 gene knockdown. Taken together, our findings suggested that rifampicin inhibited microglial inflammation by suppressing MSS1 protein production. Silencing MSS1 gene expression decreased neuroinflammation. We concluded that MSS1 inhibition, in addition to anti-inflammatory rifampicin, might represent a novel mechanism for the treatment of neuroinflammatory disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uptake of pathogenic intracellular bacteria into human and murine macrophages downregulates the eukaryotic 26S protease complex ATPase gene.

A differential PCR technique detected the transcriptional downregulation of the mss1 (mammalian suppressor of svg1) gene in murine J774A.1 macrophages following uptake of Salmonella typhimurium. This downregulation was also noted after entry of virulent strains of Listeria monocytogenes and Shigella flexneri, two other facultative intracellular bacterial species. In contrast, uptake of nonpatho...

متن کامل

Down-regulation of the 26S proteasome subunit RPN9 inhibits viral systemic transport and alters plant vascular development.

Plant viruses utilize the vascular system for systemic movement. The plant vascular network also transports water, photosynthates, and signaling molecules and is essential for plant growth. However, the molecular mechanisms governing vascular development and patterning are still largely unknown. From viral transport suppressor screening using virus-induced gene silencing, we identified a 26S pr...

متن کامل

Purification and characterization of 26S proteasomes from human and mouse spermatozoa.

We purified by fractionation on 10-40% glycerol gradients, 26S proteasomes from normal human spermatozoa. These proteasomes, which participate in the ATP-dependent degradation of ubiquitinated proteins, share a similar sedimentation coefficient to those purified from other human tissues. Fluorogenic peptide assays reveal they have chymotrypsin, trypsin and peptidyl-glutamyl-like peptide hydroly...

متن کامل

Cytokinin growth responses in Arabidopsis involve the 26S proteasome subunit RPN12.

The 26S proteasome is an ATP-dependent eukaryotic protease responsible for degrading many important cell regulators, especially those conjugated with multiple ubiquitins. Bound on both ends of the 20S core protease is a multisubunit regulatory particle that plays a crucial role in substrate selection by an as yet unknown mechanism(s). Here, we show that the RPN12 subunit of the Arabidopsis regu...

متن کامل

Identification and characterization of a Drosophila proteasome regulatory network.

Maintaining adequate proteasomal proteolytic activity is essential for eukaryotic cells. For metazoan cells, little is known about the composition of genes that are regulated in the proteasome network or the mechanisms that modulate the levels of proteasome genes. Previously, two distinct treatments have been observed to induce 26S proteasome levels in Drosophila melanogaster cell lines, RNA in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012